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Object Recognition with Local Descriptors

Basic idea:

« Determine interest points in model images

« Determine invariant local image properties around interest points
» Use local image properties for finding matching objects

[ome—

Matchiﬁg images using SIFT features
(SIFT = Scale-Invariant Feature Transform)
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SIFT Method

David G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints
InternationalJournal of Computer Vision, 2004 (Protected by US patent)

Lowe developed specific methods for:

1. Determininginvariantlocaldescriptorsatinterest points

. finding stable interest points ("keypoints")

. computing largely scale-invariant features at interest points

2. Extracting stable descriptors for object models

3. Findingand recognizingobjects based on local descriptors
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Determining SIFT Keypoints: Scale Space

Keypoints are local maxima and minima in the DoG of scaled images.

Recall:

L(x, v, ko) = G(x, y, ko) * I(x, y)
Convolution of image I(x, y) with Gaussian G(x, y, ko)

D(x, y, 0) = L(x, y, kio) - L(x, y, ko)
Difference of Gaussians (DoG)

Procedure:

a) Initial image is repeatedly convolved with Gaussians of multiples of o, forming a
scale space.

b) Scaledimages within an octave (o ... 20) have same resolution. Adjacent scales
are subtracted to produce DoGs.

c) Scaledimages are down-sampled from one octave to the next.
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lllustration of SIFT Scale Space

sale | g 3
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(first
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Difference of
Gaussian Gaussian (DOG)
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Example Image in SIFT Scale Space

5 Gaussian filtered
images per octace

Corresponding DoGs
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Determining Extrema

Find local minima and maxima by comparinga DoG pixel toits 26
neighboursin 3x3 regions atthe current and adjacent scales.
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Sub-pixel Localization of Extrema

* Take extrema of previous step as keypoint candidates
« Determine Taylor expansion at candidate location

* Find subpixel extremum by setting derivatives to zero

* |If location of subpixel extremum is within 0.5 of candidate location

(in x- or y-direction), keep keypoint at subpixel location,
otherwise discard keypoint candidate

* |f value of expansionatsubpixel locationislessthan 0.03, discard keypoint

Taylor expansion: 4 4 -
oD oD 1 ,0°D 1 ,0°D 0°D
D(x,y)=D+x—+y—+—x —+—y —+ Xy
0x dy 2  ox° 27 dy 0xdy

L1 1 ] I

Extrema:
~ Dnyy — Dnyy Dxny - Dnyx

X = y =
ext 2 ext 2
D.D, -D? D.D, -D?

approximated from
local neighbourhood

oD

with D _=— etc.

0x
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Eliminating Edge Responses

 Keypointsatstrongedges tend to be unstable. Principal curvatures at
keypoint must be significant for keypoint to be stable.

xx xy

D
e ComputeHessian at keypoint: H =
ny Dyy

 Eigenvaluesaand 3 of H are proportional to principal curvatures.
* Notethat p_ Tr(H)’ _ (r+1)° /44 L tr(H) = D, + D,, = ao+ f
Det(H) r B det(H) = DD, —(D,)" = aa

XX Yy

* The higherthe absolute differences of principal curvatures of D, the higher
the value of R.

(r +1)°

o

e Henceif R> with 7, as threshold, the keypointis discarded.
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lllustration of Principal Curvatures

surface
normal

Each point of a 3D surface has a maximum and minimum curvature.
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Assigning Orientations

Each keypointis marked by one or more dominant orientations based on
image gradient directions computedin a neighbouringregion.

Gradient magnitude:

m(x,y) = J(L(x+1,) = L(x=1,))* + (L(x, y +1) = L(x, y = 1))’

Gradient direction:
6(x,y) = atan2| L(x, y + 1) = L(x,y 1), L(x +1,y) - L(x -1, )]

Gradient magnitudes, weighted by a Gaussian ofradius 1.50, are summed in
36 bins of an orientation histogram. The histogram peak and all other peaks
within 80% of the absolute peak value are assigned as dominant keypoint
orientations.

Dominant keypoint orientations are used to achieve orientation invariance
for object recognition.
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lllustration of Keypoint Selection |

233 x 189 greyvalue image 832 keypoint candidates at extrema of DoG
images. Vectors show location, orientation and
scale.
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lllustration of Keypoint Selection Il

729 keypoints remain after applying 536 keypoints remain after applying threshold
threshold on minimum contrast on ratio of principal curvatures
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Computing a Keypoint Descriptor

e 4 x4orientationhistograms with 8 bins each are determined froma 16 x
16 neighbourhood of a keypoint. Each bin contains the sum of the gradient
magnitudes of corresponding orientations, weighted by a Gaussian.

e [llustration shows 2 x 2 histograms for 8 x 8 neighbourhood,
Gaussianindicated by circle.
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Recognition Using SIFT Features

« Compute SIFT features on the input image
« Match these features to the SIFT feature database of an object model

« Each keypoint specifies 4 parameters: 2D location, scale, and dominant
orientation.

« To increase recognition robustness: Hough transform to identify clusters of
matches that vote for the same object pose.

« Each keypoint votes for the set of object poses that are consistent with the
keypoint's location, scale, and orientation.

* Locations in the Hough accumulator that accumulate at least 3 votes are
selected as candidate object/pose matches.

» Averfication step matches the training image for the hypothesized
object/pose to the image using a least-squares fit to the hypothesized
location, scale, and orientation of the object.
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Experiment 1 |

Training images

Test image
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Experiment 1 Il

Test image with
overlaid results.

Parallelograms
show locations of
recognized objects.

Small squares show
keypoints used for
recognition.
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Experiment 2 |

Complextestimage, 640 x 315 pixels
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Experiment 2 Il

Trainingimages taken from independentviewpoints
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Experiment 2 Ili
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SIFT Features Summary

« SIFT features are reasonably invariant to rotation,
scaling, and illumination changes.

« They can be used for matching and object recognition
(among other things).

* Robust to occlusion: as long as we can see at least 3
features from the object we can compute the location
and pose.

 Efficient on-line matching: recognition can be performed
in close-to-real time (at least for small object databases).
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Combined Object Categorization and
Segmentation

Bastian Leibe, Ales Leonardis, and Bernt Schiele: Combined Object Categorization and
Segmentation with an Implicit Shape Model

ECCV’'04 Workshop on Statistical Learning in Computer Vision, Prague, May 2004.

Define a shape model for an object class (or category) by

» aclass-specific collection of local appearances (a "codebook"),

* a spatial probability distribution specifying where a codebook entry may be found
on the object

To recognize an object,

e extractimage patches around interest points and and compare them with the
codebook.

* Matching patches cast probabilistic votes leading to object hypotheses.

* Each pixel of an object hypothesis is classified as object or background based on
the contributing patches.
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Implicit Shape Model - Representation
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105 training images - k HhEE Appearance codebook
(+ motion segmentation)
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Q
e Learn appearance codebook ‘ - ‘-
Extract 25x25 patches at interest points ’ ; ! Q@*
Agglomerative clustering = codebook > 4
y y
@ ¢
e Learn spatial distributions u x &
Match codebook to training images & .

Record matching positions on object

X X
Spatial occurrence distributions
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Harris Corner Detector |

Large differences between a pixel and its surroundings:

S(x,y)= EEW(M’V) ([(u+x),v+y)—](u,v))2

Averagingovera circular window with Gaussian weights w(u, v).

First-order Taylor Series approximation:

I(ut+x, v+y) =I(u, v) + [ (u, v) x +Iy(u, v)y

) Sy =S S W) (L@ L, w)y) =[x y]Am

[2

y

: I} 11
with  4- E E w(u,v)[[ ; ’ y} "Structure Tensor"
u v x"y
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Harris Corner Detector |l

* Eigenvalues/; and 4, of 4 indicate cornerness:

— A;=0and,=0 basicallyflat greyvalues
— A;=0and A, > 0 edge
— A; > 0and A, > 0 corner

* Instead of computing eigenvalues explicitly:

— M. =LA, —Kk(A;+1,)° =| det(A) — k trace’*(A)
measure of cornerness

— k=0.04...0.15 sensitivity parameter, must be tuned empirically

21.01.16 University of Hamburg, Dept. Informatics



IP1 — Lecture 22: Object Recognition 2

Agglomerative Clustering

e Start with separate clusters for each single item

 Merge most similar clusters as long as average similarity
within cluster stays above threshold

s(C) = EPEC NGCp) similarity s within cluster C
| C
-(pi - ﬁ)(qi - q)
NGC(p.q)= \/EE(;D _ 1—9)22 (q. - q)* Normalized Greyscale Correlation
3 AN
2
1 / /\ A
0 0/ ® o/ \0 O
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Implicit Shape Model - Recognition |

Interest Points Matched Codebook Entries Probabilistic Voting

Image Patch Interpretations / Objects o
(evidence ¢) (Codebook match) Positions x

. p(lj‘e) .p(on,x‘]j) . p(on’x‘[j)p(]j‘e)

= 9.
o= 3l 1, bl
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Implicit Shape Model - Recognition Il

Probabilistic Voting

Interest Points Matched Codebook Entries

&

e Spatial feature configurations ) ° e =8
@ §
¢ Interleaved object recognition and (/2
segmentation Voting Space

(continuous)

B- €17

Backprojection
of Maxima

Segmentation

Refined Hypotheses Backprojected
(uniform sampling) Hypotheses
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Car Detection

e Recognizes different kinds of cars

e Robustto clutter, occlusion, noise, low contrast
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Cow Detection and Segmentation

 frame-by-frame detection

* notemporal continuity exploited
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